Что такое окружность в логике. Круги Эйлера: почему один раз увидеть лучше, чем сто раз услышать. Зачем нужны круги Эйлера

28 мая 2015

Леонард Эйлер (1707-1783) - известный швейцарский и российский математик, член Петербургской академии наук, бо́льшую часть жизни прожил в России. Наиболее известным в математическом анализе, статистике, информатике и логике считается круг Эйлера (диаграмма Эйлера-Венна), используемый для обозначения объема понятий и множеств элементов.

Джон Венн (1834-1923) - английский философ и логик, соавтор диаграммы Эйлера-Венна.

Совместимые и несовместимые понятия

Под понятием в логике подразумевается форма мышления, отражающая существенные признаки класса однородных предметов. Они обозначаются одним либо группой слов: «карта мира», «доминантовый квинтсептаккорд», «понедельник» и др.

В случае когда элементы объема одного понятия полностью или частично принадлежат объему другого, говорят о совместимых понятиях. Если же ни один элемент объема определенного понятия не принадлежит к объему другого, мы имеем место с несовместимыми понятиями.

В свою очередь, каждый из видов понятий имеет собственный набор возможных отношений. Для совместимых понятий это следующие:

  • тождество (равнозначность) объемов;
  • пересечение (частичное совпадение) объемов;
  • подчинение (субординация).

Для несовместимых:

  • соподчинение (координация);
  • противоположность (контрарность);
  • противоречие (контрадикторность).

Схематически отношения между понятиями в логике принято обозначать при помощи кругов Эйлера-Венна.

Отношения равнозначности

В данном случае понятия подразумевают один и тот же предмет. Соответственно, объемы данных понятий полностью совпадают. Например:

А - Зигмунд Фрейд;

В - основоположник психоанализа.

А - квадрат;

В - равносторонний прямоугольник;

С - равноугольный ромб.

Для обозначения используются полностью совпадающие круги Эйлера.

Пересечение (частичное совпадение)

А - педагог;

В - меломан.

Как видно из данного примера, объемы понятий частично совпадают: определенная группа педагогов может оказаться меломанами, и наоборот - среди меломанов могут быть представители педагогической профессии. Аналогичное отношение будет в случае, когда в качестве понятия А выступает, например, «горожанин», а в качестве В - «автоводитель».

Подчинение (субординация)

Схематически обозначаются как разные по масштабу круги Эйлера. Отношения между понятиями в данном случае характеризуются тем, что подчиненное понятие (меньшее по объему) полностью входит в состав подчиняющего (большего по объему). При этом подчиненное понятие не исчерпывает полностью подчиняющее.

Например:

А - дерево;

В - сосна.

Понятие В будет являться подчиненным по отношению к понятию А. Так как сосна относится к деревьям, то понятие А становится в данном примере подчиняющим, «поглощающим» объем понятия В.

Соподчинение (координация)

Отношение характеризует два и более понятия, исключающих друг друга, но принадлежащих при этом определенному общему родовому кругу. Например:

А - кларнет;

В - гитара;

С - скрипка;

D - музыкальный инструмент.

Понятия А, В, С не являются пересекающимися по отношению друг к другу, тем не менее, все они относятся к категории музыкальных инструментов (понятие D).

Противоположность (контрарность)

Противоположные отношения между понятиями подразумевают отнесенность данных понятий к одному и тому же роду. При этом одно из понятий обладает определенными свойствами (признаками), в то время как другое их отрицает, замещая противоположными по характеру. Таким образом, мы имеем дело с антонимами. Например:

А - карлик;

В - великан.

Круг Эйлера при противоположных отношениях между понятиями разделяется на три сегмента, первый из которых соответствует понятию А, второй - понятию В, а третий - всем остальным возможным понятиям.

Противоречие (контрадикторность)

В данном случае оба понятия представляют собой виды одного и того же рода. Как и в предыдущем примере, одно из понятий указывает на определенные качества (признаки), в то время как другое их отрицает. Однако, в отличие от отношения противоположности, второе, противоположное понятие, не заменяет отрицаемые свойства другими, альтернативными. Например:

А - сложная задача;

В - несложная задача (не-А).

Выражая объем понятий подобного рода, круг Эйлера разделяется на две части - третьего, промежуточного звена в данном случае не существует. Таким образом, понятия также являются антонимами. При этом одно из них (А) становится положительным (утверждающим какой-либо признак), а второе (В или не-А) - отрицательным (отрицающим соответствующий признак): «белая бумага» - «не белая бумага», «отечественная история» - «зарубежная история» и т. д.

Таким образом, соотношение объемов понятий по отношению друг к другу является ключевой характеристикой, определяющей круги Эйлера.

Отношения между множествами

Также следует различать понятия элементов и множества, объем которых отображают круги Эйлера. Понятие множества заимствовано из математической науки и имеет достаточно широкое значение. Примеры в логике и математике отображают его как некую совокупность объектов. Сами же объекты являются элементами данного множества. «Множество есть многое, мыслимое как единое» (Георг Кантор, основатель теории множеств).

Обозначение множеств осуществляется заглавными буквами: А, В, С, D… и т. д., элементов множеств - строчными: а, b, с, d…и др. Примерами множества могут быть студенты, находящиеся в одной аудитории, книги, стоящие на определенной полке (или, например, все книги в какой-либо определенной библиотеке), страницы в ежедневнике, ягоды на лесной поляне и т. д.

В свою очередь, если определенное множество не содержит ни одного элемента, то его называют пустым и обозначают знаком Ø. Например, множество точек пересечения параллельных прямых, множество решений уравнения х 2 = -5.

Решение задач

Для решения большого количества задач активно используются круги Эйлера. Примеры в логике наглядно демонстрируют связь логических операций с теорией множеств. При этом используются таблицы истинности понятий. Например, круг, обозначенный именем А, представляет собой область истинности. Таким образом, область вне круга будет представлять ложь. Чтобы определить область диаграммы для логической операции, следует заштриховать области, определяющие круг Эйлера, в которых ее значения для элементов А и В будут истинны.

Использование кругов Эйлера нашло широкое практическое применение в разных отраслях. Например, в ситуации с профессиональным выбором. Если субъект озабочен выбором будущей профессии, он может руководствоваться следующими критериями:

W - что я люблю делать?

D - что у меня получается?

P - чем я смогу хорошо зарабатывать?

Изобразим это в виде схемы: круги Эйлера (примеры в логике - отношение пересечения):

Результатом станут те профессии, которые окажутся на пересечении всех трех кругов.

Отдельное место круги Эйлера-Венна занимают в математике (теория множеств) при вычислении комбинаций и свойств. Круги Эйлера множества элементов заключены в изображении прямоугольника, обозначающего универсальное множество (U). Вместо кругов также могут использоваться другие замкнутые фигуры, но суть от этого не меняется. Фигуры пересекаются между собой, согласно условиям задачи (в наиболее общем случае). Также данные фигуры должны быть обозначены соответствующим образом. В качестве элементов рассматриваемых множеств могут выступать точки, расположенные внутри различных сегментов диаграммы. На ее основе можно заштриховать конкретные области, обозначив тем самым вновь образованные множества.

С данными множествами допустимо выполнение основных математических операций: сложение (сумма множеств элементов), вычитание (разность), умножение (произведение). Кроме того, благодаря диаграммам Эйлера-Венна можно проводить операции сравнения множеств по числу входящих в них элементов, не считая их.

РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ «КРУГОВ ЭЙЛЕРА»

Рыбина Ангелина

Класс 5 «Д», МОУ «СОШ № 59 с УИП», РФ, г. Саратов

Багаева Ирина Викторовна

научный руководитель, педагог высшей категории, преподаватель математики, МОУ «СОШ № 59 с УИП», РФ, г. Саратов

«… круги очень подходят для того, чтобы облегчить наши размышления»

Леонард Эйлер

Нет ученого, имя которого упоминалось бы в учебной математической литературе столь же часто, как имя Эйлера. Даже в средней школе логарифмы и тригонометрию изучают до сих пор в значительной степени «по Эйлеру».

В 1741 году Эйлер пишет «Письма о разных физических и философических материях, написанные к некоторой немецкой принцессе...», где появились впервые «круги Эйлера». Эйлер писал тогда, что «круги очень подходят для того, чтобы облегчить наши размышления».

При решении целого ряда задач Леонард Эйлер использовал идею изображения множеств с помощью кругов и они получили название «круги Эйлера».

С помощью этих кругов Эйлер изобразил и множество всех действительных чисел:

· N - множество натуральных чисел,

· Z - множество целых чисел,

· Q - множество рациональных чисел,

· R - множество всех действительных чисел.

Рисунок 1. Изображение множества действительных чисел

Что такое множество?

В математике нет точного определения этого понятия. Понятие «множество» не определяется, оно поясняется примерами: множество яблок в корзине; множество точек отрезка прямой. Множество состоит из элементов. В приведенных примерах - это яблоки, буквы, точки.

Множества обозначаются заглавными буквами латинского алфавита: А, В, С, ... K, M, N … Х, ...; элементы множества - строчными буквами алфавита: а, в, с, ... k, m, n … х, у, .... А={а; в; с; d} - множество А состоит из элементов а, в, с, d, или, говорят, что элемент а принадлежит множеству А, записывается: аА (знак читается: «принадлежит»). Элемент 5 не входит в множество А, говорят, что «5 не принадлежит А»: 5 А, или . Если множество В не содержит ни одного элемента, то говорят, что оно пустое, обозначается: В=.

Под множеством можно понимать совокупность каких-либо объектов, называемых элементами множества . Примерами множеств могут быть и дома на нашей улице, и алфавит - совокупность букв, и наш 5 «Д» класс - множество учеников.

Множества могут быть:

· Конечное (элементы которого можно пересчитать; например - множество цифр)

· Пустое (не содержащее ни одного элемента; например - множество зайцев, которые учатся в нашем классе).

Множество K называется подмножеством множества N, если каждый элемент множества K является элементом множества N. Обозначается: KÍN. Говорят, что множество K включается в множество N.

Подмножества можно проиллюстрировать кругами Эйлера.

Рисунок 2. Изображение подмножества

Действия с множествами

В математике существуют несколько операций над множествами. Мы разберем два из них: пересечение и объединение.

1. Пересечение множеств

Пересечением множеств M и N называется множество, состоящее из элементов, одновременно принадлежащих M и N . Пересечение множеств M и N обозначается .

Пример. Множество N = { А Н Д Р Е Й };

множество K = { А Л Е К С Е Й }; множество M = { Д М И Т Р И Й }

Рисунок 3. Пример пересечения множеств

2. Объединение множеств

Объединение множеств - это множество, содержащее в себе все элементы исходных множеств. Объединение множеств M и N обозначается .

Пример ; 2) объединение множества всех пород собак и множества мопсов есть множество всех собак.

Операции объединения и пересечения множеств очень удобно показывать с помощью кругов Эйлера.

По определению в пересечение двух множеств M и N входят элементы, принадлежащие множествам M и N одновременно

Пример. Пусть D - множество из 12 самых хороших девочек, M - множество из 12 самых умных мальчиков. Получили наш класс.

Рисунок 4. Пример объединения множеств

3. Вложенные множества.

Пример. Имеется три множества: «дети», «школьники», «учащиеся начальной школы». Мы видим, что эти 3 множества находятся одно внутри другого. Про множество, находящееся внутри другого множества, говорят, что оно вложенное.

Рисунок 5. Пример вложенных множеств

Задачи, которые можно решить с помощью диаграмм Эйлера

Задача № 1

На стол бросили две салфетки 10 см х 10 см. Они покрыли площадь стола, равную 168. Какова площадь перекрытия?

1)168 – 10 х 10 = 68;

2)10 х 10 – 68 = 32.

Ответ: 32 см

Рисунок 6. Рисунок к задаче № 1

Задача № 2

В поход ходили 80 % учеников класса, а на экскурсии было 60 %, причем каждый был в походе или на экскурсии. Сколько процентов класса были и там, и там?

А - множество учеников, которые ходили в поход

В - множество учеников, которые были на экскурсии

100 % – 80 % = 20 %

60 % – 20 % = 40 %

Ответ: 40 %

Рисунок 7. Рисунок к задаче № 2

Задача № 3

В нашем классе 24 ученика. Все они хорошо провели зимние каникулы.10 человек катались на лыжах, 16 ездили на каток, а 12 - лепили снеговиков. Сколько учеников смогли покататься и на лыжах, и на коньках, и слепить снеговика?

А - множество ребят, катающихся на лыжах

В - множество ребят, катающихся на коньках

С - множество ребят, лепивших снеговиков

Пусть х - число ребят,

которые успели за эти каникулы всё!

(12 - х) + (16 - х) + (10 - х) + х = 24

Ответ: 7 ребят

Рисунок 8. Рисунок к задаче № 3

Задача № 4

9 моих друзей любят бананы, 8 – апельсины, а 7 – сливы, 5 – бананы и апельсины, 3 – бананы и сливы, 4 – апельсины и сливы, 2 – бананы, апельсины и сливы. Сколько у меня друзей?

5 – 2 = 3 3 – 2 = 1 4 – 2 = 2

9 – 6 = 3 8 – 7 = 1 7 – 5 = 2

3 + 1 + 2 + 3 + 2 + 1 + 2 = 14

Ответ: 14 друзей

Рисунок 9. Рисунок к задаче № 4

Задача № 5

В пионерском лагере «Дубки» в смене актива отдыхали: 30 отличников, 28 победителей олимпиад и 42 спортсмена. 10 человек были и отличниками и победителями олимпиад, 5 - отличниками и спортсменами, 8 - спортсменами и победителями олимпиад, 3 - и отличники, и спортсмены, и победители олимпиад.

Сколько ребят отдыхали в лагере?

А - множество отличников

В - множество победителей олимпиад

С - множество спортсменов

10 – 3 = 7 5 – 3 = 2 8 – 3 = 5

30 – 12 = 18 28 – 15 = 13 42 – 10 = 32

18 + 13 + 32 + 7 + 2 + 5 + 3 = 80

Ответ: 80 ребят

Рисунок 10. Рисунок к задаче № 5

3. Заключение

Диаграммы Эйлера - это общее название целого ряда способов графической иллюстрации, широко используемых в различных областях математики: теория множеств, теория вероятностей, логика, статистика, компьютерные науки, и др. Применение кругов Эйлера позволяет даже пятикласснику легко решать задачи, которые обычным путем решаются только в старших классах.

Список литературы:

1.Александрова Р.А., Потапов А.М. Элементы теории множеств и математической логики. Практикум / Калининград. 1997. - 66 с.

2.Депман И.Я., Виленкин Н.Я. За страницами учебника математики. Пособие для учащихся 5-6 кл. М.: Просвещение, 1999. с. 189-191, 231.

3.Задачи для внеклассной работы по математике в V-VI классах: Пособие для учителей / Сост. В.Ю. Сафонова. Под ред. Д.Б. Фукса, А.Л. Гавронского. М.: МИРОС, 1993. - с. 42.

4.Занимательная математика. 5-11 классы. Как сделать уроки нескучными / Авт. сост. Т.Д. Гаврилова. Волгоград: Учитель, 2005. - с. 32-38.

5.Смыкалова Е.В. Дополнительные главы по математике для учащихся 5 класса. СПб: СМИО Пресс, 2009. - с. 14-20.

6.Энциклопедия для детей. Т. 11. Математика Глав.ред. М.Д. Аксёнова. М.: Аванта +, 2001. - с. 537-542.

Разделы: Информатика

1. Введение

В курсе Информатики и ИКТ основной и старшей школы рассматриваются такие важные темы как “Основы логики” и “Поиск информации в Интернет”. При решении определенного типа задач удобно использовать круги Эйлера (диаграммы Эйлера-Венна).

Математическая справка. Диаграммы Эйлера-Венна используются прежде всего в теории множеств как схематичное изображение всех возможных пересечений нескольких множеств. В общем случае они изображают все 2 n комбинаций n свойств. Например, при n=3 диаграмма Эйлера-Венна обычно изображается в виде трех кругов с центрами в вершинах равностороннего треугольника и одинаковым радиусом, приблизительно равным длине стороны треугольника.

2. Представление логических связок в поисковых запросах

При изучении темы “Поиск информации в Интернет” рассматриваются примеры поисковых запросов с использованием логических связок, аналогичным по смыслу союзам “и”, “или” русского языка. Смысл логических связок становится более понятным, если проиллюстрировать их с помощью графической схемы – кругов Эйлера (диаграмм Эйлера-Венна).

Логическая связка Пример запроса Пояснение Круги Эйлера
& - “И” Париж & университет Будут отобраны все страницы, где упоминаются оба слова: Париж и университет Рис.1
| - “ИЛИ” Париж | университет Будут отобраны все страницы, где упоминаются слова Париж и/или университет Рис.2

3. Связь логических операций с теорией множеств

С помощью диаграмм Эйлера-Венна можно наглядно представить связь логических операций с теорией множеств. Для демонстрации можно воспользоваться слайдами в Приложение 1.

Логические операции задаются своими таблицами истинности. В Приложении 2 подробно рассматриваются графические иллюстрации логических операций вместе с их таблицами истинности. Поясним принцип построения диаграммы в общем случае. На диаграмме – область круга с именем А отображает истинность высказывания А (в теории множеств круг А – обозначение всех элементов, входящих в данное множество). Соответственно, область вне круга отображает значение “ложь” соответствующего высказывания. Что бы понять какая область диаграммы будет отображением логической операции нужно заштриховать только те области, в которых значения логической операции на наборах A и B равны “истина”.

Например, значение импликации равно “истина” в трех случаях (00, 01 и 11). Заштрихуем последовательно: 1) область вне двух пересекающихся кругов, которая соответствует значениям А=0, В=0; 2) область, относящуюся только к кругу В (полумесяц), которая соответствует значениям А=0, В=1; 3) область, относящуюся и к кругу А и к кругу В (пересечение) – соответствует значениям А=1, В=1. Объединение этих трех областей и будет графическим представлением логической операции импликации.

4. Использование кругов Эйлера при доказательстве логических равенств (законов)

Для того, чтобы доказать логические равенства можно применить метод диаграмм Эйлера-Венна. Докажем следующее равенство ¬(АvВ) = ¬А&¬В (закон де Моргана).

Для наглядного представления левой части равенства выполним последовательно: заштрихуем оба круга (применим дизъюнкцию) серым цветом, затем для отображения инверсии заштрихуем область за пределами кругов черным цветом:

Рис.3 Рис.4

Для визуального представления правой части равенства выполним последовательно: заштрихуем область для отображения инверсии (¬А) серым цветом и аналогично область ¬В также серым цветом; затем для отображения конъюнкции нужно взять пересечение этих серых областей (результат наложения представлен черным цветом):

Рис.5 Рис.6 Рис.7

Видим, что области для отображения левой и правой части равны. Что и требовалось доказать.

5. Задачи в формате ГИА и ЕГЭ по теме: “Поиск информации в Интернет”

Задача №18 из демо-версии ГИА 2013.

В таблице приведены запросы к поисковому серверу. Для каждого запроса указан его код – соответствующая буква от А до Г. Расположите коды запросов слева направо в порядке убывания количества страниц, которые найдет поисковый сервер по каждому запросу.

Код Запрос
А (Муха & Денежка) | Самовар
Б Муха & Денежка & Базар & Самовар
В Муха | Денежка | Самовар
Г Муха & Денежка & Самовар

Для каждого запроса построим диаграмму Эйлера-Венна:

Запрос А Запрос Б

Запрос В

Запрос Г

Ответ: ВАГБ.

Задача В12 из демо-версии ЕГЭ-2013.

В таблице приведены запросы и количество найденных по ним страниц некоторого сегмента сети Интернет.

Запрос Найдено страниц (в тысяч)
Фрегат | Эсминец 3400
Фрегат & Эсминец 900
Фрегат 2100

Какое количество страниц (в тысячах) будет найдено по запросу Эсминец ?

Считается, что все запросы выполнялись практически одновременно, так что набор страниц, содержащих все искомые слова, не изменялся за время выполнения запросов.

Ф – количество страниц (в тысячах) по запросу Фрегат ;

Э – количество страниц (в тысячах) по запросу Эсминец ;

Х – количество страниц (в тысячах) по запросу, в котором упоминается Фрегат и не упоминается Эсминец ;

У – количество страниц (в тысячах) по запросу, в котором упоминается Эсминец и не упоминается Фрегат.

Построим диаграммы Эйлера-Венна для каждого запроса:

Запрос Диаграмма Эйлера-Венна Количество страниц
Фрегат | Эсминец Рис.12

3400
Фрегат & Эсминец Рис.13

900
Фрегат Рис.14 2100
Эсминец Рис.15 ?

Согласно диаграммам имеем:

  1. Х+900+У = Ф+У = 2100+У = 3400. Отсюда находим У = 3400-2100 = 1300.
  2. Э = 900+У = 900+1300= 2200.

Ответ: 2200.

6. Решение логических содержательных задач методом диаграмм Эйлера-Венна

В классе 36 человек. Ученики этого класса посещают математический, физический и химический кружки, причем математический кружок посещают 18 человек, физический - 14 человек, химический - 10. Кроме того, известно, что 2 человека посещают все три кружка, 8 человек - и математический и физический, 5 и математический и химический, 3 - и физический и химический.

Сколько учеников класса не посещают никаких кружков?

Для решения данной задачи очень удобным и наглядным является использование кругов Эйлера.

Самый большой круг – множество всех учеников класса. Внутри круга три пересекающихся множества: членов математического (М ), физического (Ф ), химического (Х ) кружков.

Пусть МФХ – множество ребят, каждый из которых посещает все три кружка. МФ¬Х – множество ребят, каждый из которых посещает математический и физический кружки и не посещает химический. ¬М¬ФХ - множество ребят, каждый из которых посещает химический кружок и не посещает физический и математический кружки.

Аналогично введем множества: ¬МФХ, М¬ФХ, М¬Ф¬Х, ¬МФ¬Х, ¬М¬Ф¬Х.

Известно, что все три кружка посещают 2 человека, следовательно, в область МФХ впишем число 2. Т.к. 8 человек посещают и математический и физический кружки и среди них уже есть 2 человека, посещающих все три кружка, то в область МФ¬Х впишем 6 человек (8-2). Аналогично определим количество учащихся в остальных множествах:

Просуммируем количество человек по всем областям: 7+6+3+2+4+1+5=28. Следовательно, 28 человек из класса посещают кружки.

Значит, 36-28 = 8 учеников не посещают кружки.

После зимних каникул классный руководитель спросил, кто из ребят ходил в театр, кино или цирк. Оказалось, что из 36 учеников класса двое не были ни в кино. ни в театре, ни в цирке. В кино побывало 25 человек, в театре - 11, в цирке 17 человек; и в кино, и в театре - 6; и в кино и в цирке - 10; и в театре и в цирке - 4.

Сколько человек побывало и в кино, и в театре, и в цирке?

Пусть х – количество ребят, которые побывали и в кино, и в театре, и в цирке.

Тогда можно построить следующую диаграмму и посчитать количество ребят в каждой области:

В кино и театре побывало 6 чел., значит, только в кино и театре (6-х) чел.

Аналогично, только в кино и цирке (10-х) чел.

Только в театре и цирке (4-х) чел.

В кино побывало 25 чел., значит, из них только в кино были 25 - (10-х) – (6-х) – х = (9+х).

Аналогично, только в театре были (1+х) чел.

Только в цирке были (3+х) чел.

Не были в театре, кино и цирке – 2 чел.

Значит, 36-2=34 чел. побывали на мероприятиях.

С другой стороны можем просуммировать количество человек, которые были в театре, кино и цирке:

(9+х)+(1+х)+(3+х)+(10-х)+(6-х)+(4-х)+х = 34

Отсюда следует, что только один человек побывал на всех трех мероприятиях.

Таким образом, круги Эйлера (диаграммы Эйлера-Венна) находят практическое применение при решении задач в формате ЕГЭ и ГИА и при решении содержательных логических задач.

Литература

  1. В.Ю. Лыскова, Е.А. Ракитина. Логика в информатике. М.: Информатика и Образование, 2006. 155 с.
  2. Л.Л. Босова. Арифметические и логические основы ЭВМ. М.: Информатика и образование, 2000. 207 с.
  3. Л.Л. Босова, А.Ю. Босова. Учебник. Информатика и ИКТ для 8 класса: БИНОМ. Лаборатория знаний, 2012. 220 с.
  4. Л.Л. Босова, А.Ю. Босова. Учебник. Информатика и ИКТ для 9 класса: БИНОМ. Лаборатория знаний, 2012. 244 с.
  5. Сайт ФИПИ: http://www.fipi.ru/
Логика. Учебное пособие Гусев Дмитрий Алексеевич

1.6. Круговые схемы Эйлера

1.6. Круговые схемы Эйлера

Как мы уже знаем, в логике выделяется шесть вариантов отношений между понятиями. Два любых сравнимых понятия обязательно находятся в одном из этих отношений. Например, понятия писатель и россиянин находятся в отношении пересечения, писатель и человек – подчинения, Москва и столица России – равнозначности, Москва и Петербург – соподчинения, мокрая дорога и сухая дорога – противоположности, Антарктида и материк – подчинения, Антарктида и Африка – соподчинения и т. д. и т. п.

Надо обратить внимание на то, что если два понятия обозначают часть и целое, например месяц и год , то они находятся в отношении соподчинения, хотя может показаться, что между ними отношение подчинения, ведь месяц входит в год. Однако, если бы понятия месяц и год были подчиненными, то тогда надо было бы утверждать, что месяц – это обязательно год, а год – это не обязательно месяц (вспомним отношение подчинения на примере понятий карась и рыба : карась – это обязательно рыба, но рыба – это не обязательно карась). Месяц – это не год, а год – это не месяц, но и то, и другое – отрезок времени, следовательно, понятия месяц и год, так же, как и понятия книга и страница книги, автомобиль и колесо автомобиля, молекула и атом и т. п., находятся в отношении соподчинения, т. к. часть и целое – не то же самое, что вид и род.

В начале говорилось о том, что понятия бывают сравнимыми и несравнимыми. Считается, что рассмотренные шесть вариантов отношений применимы только к сравнимым понятиям. Однако возможно утверждать, что все несравнимые понятия находятся между собой в отношении соподчинения. Например, такие несравнимые понятия, как пингвин и небесное тело возможно рассматривать как соподчиненные, ведь пингвин – это не небесное тело и наоборот, но в то же время объемы понятий пингвин и небесное тело входят в более широкий объем третьего понятия, родового по отношению к ним: это может быть понятие объект окружающего мира или форма материи (ведь и пингвин и небесное тело – это различные объекты окружающего мира или различные формы материи). Если же одно понятие обозначает что-то материальное, а другое – нематериальное (например, дерево и мысль ), то родовым для этих (как возможно утверждать) соподчиненных понятий является понятие форма бытия , т. к. и дерево, и мысль, и что угодно еще – это различные формы бытия.

Как нам уже известно, отношения между понятиями изображаются круговыми схемами Эйлера. Причем до сих пор мы изображали схематично отношения между двумя понятиями, а это можно сделать и с большим количеством понятий. Например, отношения между понятиями боксер, негр и человек

Взаимное расположение кругов показывает, что понятия боксер и негр находятся в отношении пересечения (боксер может быть негром и может им не быть, а также негр может быть боксером и может им не быть), а понятия боксер и человек, так же как и понятия негр и человек находятся в отношении подчинения (ведь любой боксер и любой негр – это обязательно человек, но человек может не быть ни боксером, ни негром).

Рассмотрим отношения между понятиями дедушка, отец, мужчина, человек с помощью круговой схемы:

Как видим, указанные четыре понятия находятся в отношении последовательного подчинения: дедушка – это обязательно отец, а отец – не обязательно дедушка; любой отец – это обязательно мужчина, однако не всякий мужчина является отцом; и, наконец, мужчина – это обязательно человек, но человеком может быть не только мужчина. Отношения между понятиями хищник, рыба, акула, пиранья, щука, живое существо изображаются следующей схемой:

Попробуйте самостоятельно прокомментировать эту схему, установив все имеющиеся на ней виды отношений между понятиями.

Подытоживая сказанное, отметим, что отношения между понятиями – это отношения между их объемами. Значит, для того, чтобы было возможно установить отношения между понятиями, их объем должен быть резким, а содержание, соответственно, ясным, т. е. эти понятия должны быть определенными. Что касается неопределенных понятий, о которых шла речь выше, то установить точные отношения между ними достаточно сложно, фактически невозможно, ведь из-за неясности их содержания и нерезкости объема два каких-нибудь неопределенных понятия можно будет характеризовать как равнозначные или как пересекающиеся, или как подчиняющиеся и т. д. Например, возможно ли установить отношения между неопределенными понятиями неаккуратность и небрежность ? То ли это будет равнозначность, то ли подчинение – точно сказать невозможно. Таким образом, отношения между неопределенными понятиями являются так же неопределенными. Понятно поэтому, что в тех ситуациях интеллектуально-речевой практики, где требуется точность и однозначность в определении отношений между понятиями, использование неопределенных понятий является нежелательным.

Из книги Прозрение автора Ефимов Виктор Алексеевич

Из книги Философия науки и техники автора Стёпин Вячеслав Семенович

Теоретические схемы и абстрактные объекты технической теории Теоретические схемыпредставляют собой совокупность абстрактных объектов, ориентированных, с одной стороны, на применение соответствующего математического аппарата, а с другой, – на мысленный эксперимент,

Из книги Диалектика мифа автора Лосев Алексей Федорович

2. Диалектика схемы, аллегории и символа Какие же возможны вообще виды этого взаимоотношения? Их очень много. Но, следуя Шеллингу, можно указать три основных таких вида. При этом будем иметь в виду, что наши термины «внутреннее» и «внешнее» – очень общие термины и их можно

Из книги Курс эпохи Водолея. Апокалипсис или возрождение автора Ефимов Виктор Алексеевич

Из книги Избранные труды автора Щедровицкий Георгий Петрович

Из книги Человек среди учений автора Кротов Виктор Гаврилович

Комментарии и схемы Учение, в основе которого лежит внутренняя работа личности, не могло бы пережить саму эту личность без приливов новой внутренней работы новых личностей. Тех, кто увидел для себя особый смысл в этом учении. Меняются условия существования, приходит

Из книги Искусство правильно мыслить автора Ивин Александр Архипович

СХЕМЫ ПРАВИЛЬНЫХ РАССУЖДЕНИЙ Вот два примера дедуктивных выводов из рассказа русского юмориста начала века В. Билибина. «Если бы на свете не существовало солнца, то пришлось бы постоянно жечь свечи и керосин. Если бы пришлось постоянно жечь свечи и керосин, то чиновникам

Из книги Этика любви и метафизика своеволия: Проблемы нравственной философии. автора Давыдов Юрий Николаевич

Нравственная философия Толстого и Достоевского в рамках ницшеанской схемы нигилизма Начиная с последней четверти прошлого века проблема нигилизма выходит на одно из первых мест в числе важнейших проблем западноевропейской философии. Своим «статусом» она прежде всего

Из книги Нормы в пространстве языка автора Федяева Наталья Дмитриевна

2.1.1. Нормы-схемы речевого общения: речевой этикет Выбор первой проблемной области – речевого этикета – обусловлен следующим. При определении сущностных характеристик нормы мы начали движение от социальных норм, при этом заметили, что их существование в полной мере

Из книги Спиральная динамика [Управляя ценностями, лидерством и изменениями в XXI веке] автора Бек Дон

2.1.2. Семиотически закрепленные нормы-схемы: жанры Основой противопоставления социально и семиотически закрепленных норм, как было сказано в главе I, является способ их закрепления в социокультурной практике. Первые – неписаные законы – становятся программами, схемами

Из книги Логика и аргументация: Учебн. пособие для вузов. автора Рузавин Георгий Иванович

Из книги Архитектура и иконография. «Тело символа» в зеркале классической методологии автора Ванеян Степан С.

9.1. Графические схемы структуры аргументации Всякая аргументация начинается с установления и обсуждения некоторых фактов, которые в дальнейшем будут называться данными, и с помощью которых выдвигается и обосновывается некоторое заключение. Кроме того, для перехода от

Из книги автора

Иконография как система методов: схемы и угрозы Сама практика иконографического анализа сформировала «проверенную схему» последовательных исследовательских действий. Схема подразумевает:– уяснение исторического значения мотива – с точки зрения времени (момент

Круги Эйлера - одна из самых простых тем, которые необходимы Вам для поступления в 5 класс физико-математических лицеев . На самом деле, круги Эйлера - это ни что иное, как графическое представление множеств. Объекты, обладающие определённым свойством находятся внутри круга Эйлера-Венна , не обладающие - находятся вне. Разумеется, обычно на диаграмме присутствует не один круг, а несколько, каждый из которых объединяет объекты с каким-то своим свойством. Любая задача из данного блока сводится к тому, что необходимо посчитать количество элементов в какой-либо области. Разберём на примерах, что же надо делать:

Задачи на множества людей

В классе учится учеников. изучают английский, немецкий и французский. Ни одного языка не знают человека. Также известно, что из всех ребят только один мальчик изучает языка: английский и французский. Сколько человек изучает языка?

Для решения задачи обозначим количество искомых учеников за (тех, кто изучает языка). Количество учеников, изучающих другое количество языков выразим через и условия в задаче. Диаграмма Эйлера-Венна в данном случае будет выглядеть следующим образом: Например, ребята, которые знают только английский язык, обозначены красным цветом и их количество .

Заметим, что у нас никак не использовано общее количество учеников - это условие и породит то самое уравнение, с помощью которого решится задача:





Получается, что все языка изучают человек (Можете теперь, зная , самостоятельно восстановить сколько каких учеников было в классе и проверить ответ)

Задачи на делимость (сложная делимость)

Это задачи уже повышенной сложности. Предварительно советуем изучить тему . Обязательно к прочтению только тем, кто собирается занимать призовые места.

Для скольких чисел между и верно следующее утверждение: число делится на или не делится на ?

Такое страшное и непонятное условие становится простым, если воспользоваться кругами Эйлера . Понятно, что в этой задаче рассматриваются числа, которые - нас интересуют те, что внутри соответствующего круга. Также есть числа, которые vdots 12 - нас интересуют числа, которые вне. А что же с числами, которые принадлежат обоим множествам? Во-первых, каким общим свойством они обладают, а во-вторых, интересуют ли они нас?

Сначала ответим на первый вопрос. Оказывается, если число одновременно делится на два других числа, то оно делится на Наименьшее Общее Кратное этих двух чисел, то есть на минимальное число, которое делится без остатка на оба исследуемых. Для чисел и НОК есть ничто иное, как число , так как и , а меньше числа с такими свойствам нет. Итого, в пересечении наших множеств лежат числа, которые .

Далее необходимо заметить, что в условии употреблено слово "ИЛИ" . Это значит, что для искомых чисел должно быть верно ХОТЯ БЫ ОДНО из предложенных утверждений (возможно и оба). То есть нам подходят числа которые внутри круга чисел, которые , а также все числа, которые вне круга .

Итак, диаграмма Эйлера-Венна выглядит следующим образом: Штриховкой обозначены те числа, которые и надо найти. Теперь, надеюсь, очевидно, что нам необходимо найти, сколько всего числе в рассматриваемой задаче, из этого количества вычесть количество чисел, которые и прибавить количество чисел, которые .

Итак, приступим:


Получается, что искомых чисел

Итак, подведём итог. Если Вы собираетесь поступать в 5 класс физико-математического лицея , то общие знания по кругам Эйлера-Венна Вам необходимы. Основная область применения - задачи, где присутствуют множества объектов, обладающих определёнными свойствами, и необходимо найти количество объектов обладающих (или не обладающих) совокупностью указанных свойств.