Двойной интеграл. Основные определения и свойства. Определение двойного интеграла Что такое двойной интеграл

Двойные интегралы. Определение двойного интеграла и его свойства. Повторные интегралы. Сведение двойных интегралов к повторным. Расстановка пределов интегрирования. Вычисление двойных интегралов в декартовой системе координат.

1. ДВОЙНЫЕ ИНТЕГРАЛЫ

1.1. Определение двойного интеграла

Двойной интеграл представляет собой обобщение понятия определенного интеграла на случай функции двух переменных. В этом случае вместо отрезка интегрирования будет присутствовать какая-то плоская фигура.

Пусть D – некоторая замкнутая ограниченная область, а f (x , y ) – произвольная функция, определенная и ограниченная в этой области. Будем предполагать, что границы области D состоят из конечного числа кривых, заданных уравнениями вида y =f (x ) или x =g(y ), где f (x ) и g (y ) – непрерывные функции.

Р

Рис. 1.1

азобьем область D произвольным образом на n частей. Площадь i -го участка обозначим символом s i . На каждом участке произвольно выберем какую-либо точку P i , и пусть она в какой-либо фиксированной декартовой системе имеет координаты (x i , y i ). Составим интегральную сумму для функции f (x , y ) по области D , для этого найдем значения функции во всех точках P i , умножим их на площади соответствующих участков s i и просуммируем все полученные результаты:

. (1.1)

Назовем диаметром diam (G ) области G наибольшее расстояние между граничными точками этой области.

Двойным интегралом функции f (x , y ) по области D называется предел, к которому стремится последовательность интегральных сумм (1.1) при неограниченном увеличении числа разбиений n (при этом
). Это записывают следующим образом

. (1.2)

Заметим, что, вообще говоря, интегральная сумма для заданной функции и заданной области интегрирования зависит от способа разбиения области D и выбора точек P i . Однако если двойной интеграл существует, то это означает, что предел соответствующих интегральных сумм уже не зависит от указанных факторов. Для того чтобы двойной интеграл существовал (или, как говорят, чтобы функция f (x , y ) была интегрируемой в области D ), достаточно чтобы подынтегральная функция была непрерывной в заданной области интегрирования .

П

Рис. 1.2

усть функция f (x , y ) интегрируема в области D . Поскольку предел соответствующих интегральных сумм для таких функций не зависит от способа разбиения области интегрирования, то разбиение можно производить при помощи верти­кальных и горизонтальных линий. Тогда большинство участков области D будет иметь прямоугольный вид, площадь которых равна s i =x i y i . Поэтому дифференциал площади можно записать в виде ds = dxdy . Следовательно, в декартовой системе координат двойные интегралы можно записывать в виде

. (1.3)

Замечание . Если подынтегральная функция f (x , y )1, то двойной интеграл будет равен площади области интегрирования:

. (1.4)

Отметим, что двойные интегралы обладают такими же свойствами, что и определенные интегралы. Отметим некоторые из них.

Свойства двойных интегралов.

1 0 . Линейное свойство. Интеграл от суммы функций равен сумме интегралов :

и постоянный множитель можно выносить за знак интеграла :

.

2 0 . Аддитивное свойство. Если область интегрирования D разбить на две части, то двойной интеграл будет равен сумме интегралов по каждой этой части :

.

3 0 . Теорема о среднем. Если функция f(x , y ) непрерывна в области D , то в этой области найдется такая точка (), что :

.

Далее возникает вопрос: как вычисляются двойные интегралы? Его можно вычислить приближенно, с этой целью это разработаны эффективные методы составления соответствующих интегральных сумм, которые затем вычисляются численно при помощи ЭВМ. При аналитическом вычислении двойных интегралов их сводят к двум определенным интегралам.

1.2. Повторные интегралы

Повторными интегралами называются интегралы вида

. (1.5)

В этом выражении сначала вычисляется внутренний интеграл, т.е. производится сначала интегрирование по переменной y (при этом переменная x считается постоянной величиной). В результате интегрирования по y получится некоторая функция по x :

.

Затем полученную функцию интегрируют по x :

.

Пример 1.1. Вычислить интегралы:

а)
, б)
.

Решение . а) Произведем интегрирование по y , считая, что переменная x = const . После этого вычисляем интеграл по x :

.

б) Так как во внутреннем интеграле интегрирование производится по переменной x , то y 3 можно вынести во внешний интеграл как постоянный множитель. Поскольку y 2 во внутреннем интеграле считается постоянной величиной, то этот интеграл будет табличным. Производя последовательно интегрирование по y и x , получаем

Между двойными и повторными интегралами существует взаимосвязь, но сначала рассмотрим простые и сложные области. Область называется простой в каком-либо направлении, если любая прямая, проведенная в этом направлении, пересекает границу области не более чем в двух точках. В декартовой системе координат обычно рассматривают направления вдоль осей Ox и Oy . Если область является простой в обоих направлениях, то говорят коротко – простая область, без выделения направления. Если область не является простой, то говорят, что она сложная .

Л

а б

Рис. 1.4
юбую сложную область можно представить в виде суммы простых областей. Соответственно, любой двойной интеграл можно представить в виде суммы двойных интегралов по простым областям. Поэтому в дальнейшем мы будем рассматривать, в основном, только интегралы по простым областям.

Теорема . Если область интегрирования D – простая в направлении оси Oy (см. рис.1.4а), то двойной интеграл можно записать в виде повторного следующим образом:

; (1.6)

если область интегрирования D – простая в направлении оси Ox (см. рис.1.4б), то двойной интеграл можно записать в виде повторного следующим образом:

. (1.7)

Е

Рис. 1.3

сли область интегрирования является правильной в обоих направлениях, то можно произвольно выбирать вид повторного интеграла, в зависимости от простоты интегрирования.

1.3. РАССТАНОВКА ПРЕДЕЛОВ ИНТЕГРИРОВАНИЯ

1.3.1. Прямоугольная область интегрирования

П

Рис. 1.5

ри сведении двойных интегралов к повторным, основная трудность возникает при расстановке пределов во внутренних интегралах. Наиболее просто это сделать для прямоугольных областей (см. рис. 1.5).

Пример 1.2. Вычислить двойной интеграл

.

Решение . Запишем двойной интеграл в виде повторного:

.

1.3.2. Произвольная область интегрирования

Для того, чтобы перейти от двойного интеграла к повторному следует:

    построить область интегрирования ;

    расставить пределы в интегралах, при этом следует помнить, что пределы внешнего интеграла должны быть постоянными величинами (т.е. числами) независимо от того, по какой переменной вычисляется внешний интеграл .

Пример 1.3. Расставить пределы интегрирования в соответствующих повторных интегралах для двойного интеграла

, если а)
б)

Р

Рис. 1.6

ешение . а) Изобразим область интегрирования D (см. рис.1.6). Пусть интегрирование во внешнем интеграле производится по переменной x , а во внутреннем – по y . Расстановку пределов всегда нужно начинать с внешнего интеграла , в данном случае с переменной x . Из рисунка видно, что x изменяется от 0 до 1, при этом значения переменной y будут изменяться от значений на прямой y = x до значений на прямой y =2x . Таким образом, получаем

.

Пусть теперь интегрирование во внешнем интеграле производится по y , а во внутреннем – по x . В этом случае значения y будут изменяться от 0 до 2. Однако тогда верхняя граница изменений значений переменной x будет состоять из двух участков x = y /2 и x =1. Это означает, что область интегрирования нужно разбить на две части прямой y =1. Тогда в первой области y изменяется от 0 до 1, а x от прямой x = y /2 до прямой x = y . Во второй области y изменяется от 1 до 2, а x – от прямой x = y /2 до прямой x =1. В результате получим

.

б

Рис. 1.7

)
Построим область интегрирования D (см. рис.1.7). Пусть во внешнем интеграле интегрирование производится по x , а во внутреннем – по y . В этом случае при изменении x от –1 до 1 изменения переменной y сверху будут ограничены двумя линиями: окружностью и прямой. На отрезке [–1;0] y изменяется от y =0 до
; на отрезке переменная y изменяется от y =0 до y =1–x . Таким образом,

.

Пусть теперь во внешнем интеграле интегрирование производится по y , а во внутреннем – по x . В этом случае y будет изменяться от 0 до 1, а переменная x – от дуги окружности
до прямой x =1–y . В результате получим

.

Данные примеры показывают, как важно правильно выбирать порядок интегрирования.

Пример 1.4. Изменить порядок интегрирования

а)
; б)
.

Р

Рис. 1.8

ешение . а) Построим область интегрирования. На отрезке для x переменная y изменяется от прямой y =0 до прямой y = x . В результате получается следующая область интегрирования (см. рис.1.8). На основании построенного рисунка, расставляем пределы интегрирования

.

б) Построим область интегрирования. На отрезке для y переменная x изменяется от прямой x =y до параболы
; на отрезке – от прямой x =y до прямой x = 3/4. В результате получается следующая область интегрирования (см. рис.1.9). На основании построенного рисунка, расставляем пределы интегрирования,

.

Свойства двойных интегралов.

Часть свойств двойных интегралов непосредственно вытекает из определения этого понятия и свойств интегральных сумм, а именно:

1. Если функция f(x, y) интегрируема в D , то kf(x, y) тоже интегрируема в этой области, причем (24.4)

2. Если в области D интегрируемы функции f(x, y) и g(x, y) , то в этой области интегрируемы и функции f(x, y) ± g(x, y) , и при этом

3. Если для интегрируемых в области D функций f(x, y) и g(x, y) выполняется неравенство f(x, y) g(x, y) , то

(24.6)

Докажем еще несколько свойств двойного интеграла :

4. Если область D разбита на две области D 1 и D 2 без общих внутренних точек и функция f(x, y) непрерывна в области D , то

(24.7) Доказательство . Интегральную сумму по области D можно представить в виде:

где разбиение области D проведено так, что граница между D 1 и D 2 состоит из границ частей разбиения. Переходя затем к пределу при , получим равенство (24.7).

5. В случае интегрируемости на D функции f(x, y) в этой области интегрируема и функция | f(x, y) | , и имеет место неравенство

(24.8)

Доказательство.

откуда с помощью предельного перехода при получаем неравенство (24.8)

6. где S D – площадь области D. Доказательство этого утверждения получим, подставляя в интегральную сумму f(x, y) ≡ 0.

7. Если интегрируемая в области D функция f(x, y) удовлетворяет неравенству

m ≤ f(x, y) ≤ M ,

то (24.9)

Доказательство.

Доказательство проводится предельным переходом из очевидного неравенства

Следствие.

Если разделить все части неравенства (24.9) на D , можно получить так называемую теорему о среднем:

В частности, при условии непрерывности функции f в D найдется такая точка этой области (х 0 , у 0 ), в которой f (х 0 , у 0 ) = μ , то есть

-

Еще одна формулировка теоремы о среднем.

Геометрический смысл двойного интеграла.

Рассмотрим тело V , ограниченное частью поверхности, задаваемой уравнением z = f(x, y), проекцией D этой поверхности на плоскость Оху и боковой цилиндрической поверхностью, полученной из вертикальных образующих, соединяющих точки границы поверхности с их проекциями.

z=f(x,y)


V


y P i D Рис.2.

Будем искать объем этого тела как предел суммы объемов цилиндров, основаниями которых являются части ΔS i области D , а высотами – отрезки длиной f (P i ), где точки P i принадлежат ΔS i . Переходя к пределу при , получим, что

(24.11)

то есть двойной интеграл представляет собой объем так называемого цилиндроида, ограниченного сверху поверхностью z = f(x, y) , а снизу – областью D .

Вычисление двойного интеграла путем сведения его к повторному.

Рассмотрим область D , ограниченную линиями x = a, x = b (a < b ), где φ 1 (х ) и φ 2 (х ) непрерывны на [a, b ]. Тогда любая прямая, параллельная координатной оси Оу и проходящая через внутреннюю точку области D , пересекает границу области в двух точках: N 1 и N 2 (рис.1). Назовем такую область правильной в на-

у правлении оси Оу . Аналогично определя-

y=φ 2 (x )ется область, правильная в направлении

N 2 оси Ох . Область, правильную в направле-

Нии обеих координатных осей, будем на-

D зывать просто правильной. Например,

правильная область изображена на рис.1.

y=φ 1 (x ) N 1

O a b x

Пусть функция f(x, y) непрерывна в области D . Рассмотрим выражение

, (24.12)

называемое двукратным интегралом от функции f(x, y) по области D . Вычислим вначале внутренний интеграл (стоящий в скобках) по переменной у , считая х постоянным. В результате получится непрерывная функция от х :

Полученную функцию проинтегрируем по х в пределах от а до b . В результате получим число

Докажем важное свойство двукратного интеграла.

Теорема 1. Если область D , правильная в направлении Оу , разбита на две области D 1 и D 2 прямой, параллельной оси Оу или оси Ох , то двукратный интеграл по области D будет равен сумме таких же интегралов по областям D 1 и D 2:

Доказательство.

а) Пусть прямая х = с разбивает D на D 1 и D 2 , правильные в направлении Оу . Тогда

+

+

б) Пусть прямая y = h разбивает D на правильные в направлении Оу области D 1 и D 2 (рис.2). Обозначим через M 1 (a 1 , h ) и M 2 (b 1 , h ) точки пересечения прямой y = h с гра-ницей L области D .

y Область D 1 ограничена непрерывными линиями

y=φ 2 (x ) 1) y = φ 1 (x );

D 2 2) кривой А 1 М 1 М 2 В , уравнение которой запишем

h M 1 M 2 y = φ 1 *(x ), где φ 1 *(х ) = φ 2 (х ) при а ≤ х ≤ а 1 и

A 1 D 1 B b 1 ≤ x ≤ b , φ 1 *(х ) = h при а 1 ≤ х ≤ b 1 ;

3) прямыми x = a , x = b .

Область D 2 ограничена линиями y = φ 1 *(x ),

A у = φ 2 (х ), а 1 ≤ х ≤ b 1 .

y=φ 1 (x ) Применим к внутреннему интегралу теорему о

разбиении промежутка интегрирования:

O a a 1 b 1 b

+

Представим второй из полученных интегралов в виде суммы:

+ + .

Поскольку φ 1 *(х ) = φ 2 (х ) при а ≤ х ≤ а 1 и b 1 ≤ x ≤ b , первый и третий из полученных интегралов тождественно равны нулю. Следовательно,

I D = , то есть .

ДВОЙНЫЕ ИНТЕГРАЛЫ

ЛЕКЦИЯ 1

Двойные интегралы. Определение двойного интеграла и его свойства. Повторные интегралы. Сведение двойных интегралов к повторным. Расстановка пределов интегрирования. Вычисление двойных интегралов в декартовой системе координат.

Двойной интеграл представляет собой обобщение понятия определенного интеграла на случай функции двух переменных. В этом случае вместо отрезка интегрирования будет присутствовать какая-то плоская фигура.

Пусть D – некоторая замкнутая ограниченная область, а f (x,y ) – произвольная функция, определенная и ограниченная в этой области. Будем предполагать, что границы области D состоят из конечного числа кривых, заданных уравнениями вида y =f (x ) или x =g(y ), где f (x ) и g (y ) – непрерывные функции.

Разобьем область D произвольным образом на n частей. Площадь i -го участка обозначим символом Ds i . На каждом участке произвольно выберем какую-либо точку P i , и пусть она в какой-либо фиксированной декартовой системе имеет координаты (x i ,y i ). Составим интегральную сумму для функции f (x,y ) по области D, для этого найдем значения функции во всех точках P i , умножим их на площади соответствующих участков Ds i и просуммируем все полученные результаты:

Назовем диаметром diam (G ) области G наибольшее расстояние между граничными точками этой области.

Двойным интегралом функции f (x,y ) по области D называется предел, к которому стремится последовательность интегральных сумм (1.1) при неограниченном увеличении числа разбиений n (при этом ). Это записывают следующим образом

Заметим, что, вообще говоря, интегральная сумма для заданной функции и заданной области интегрирования зависит от способа разбиения области D и выбора точек P i . Однако если двойной интеграл существует, то это означает, что предел соответствующих интегральных сумм уже не зависит от указанных факторов. Для того чтобы двойной интеграл существовал (или, как говорят, чтобы функция f (x,y ) была интегрируемой в области D), достаточно чтобы подынтегральная функция была непрерывной в заданной области интегрирования .

Пусть функция f (x,y ) интегрируема в области D . Поскольку предел соответствующих интегральных сумм для таких функций не зависит от способа разбиения области интегрирования, то разбиение можно производить при помощи верти­кальных и горизонтальных линий. Тогда большинство участков области D будет иметь прямоугольный вид, площадь которых равна Ds i =Dx i Dy i . Поэтому дифференциал площади можно записать в виде ds=dxdy . Следовательно, в декартовой системе координат двойные интегралы можно записывать в виде



Замечание . Если подынтегральная функция f (x,y )º1, то двойной интеграл будет равен площади области интегрирования:

Отметим, что двойные интегралы обладают такими же свойствами, что и определенные интегралы. Отметим некоторые из них.

Свойства двойных интегралов.

1 0 . Линейное свойство. Интеграл от суммы функций равен сумме интегралов :

и постоянный множитель можно выносить за знак интеграла :

2 0 . Аддитивное свойство. Если область интегрирования D разбить на две части, то двойной интеграл будет равен сумме интегралов по каждой этой части :

3 0 . Теорема о среднем. Если функция f(x,y ) непрерывна в области D, то в этой области найдется такая точка (x,h), что :

Далее возникает вопрос: как вычисляются двойные интегралы? Его можно вычислить приближенно, с этой целью это разработаны эффективные методы составления соответствующих интегральных сумм, которые затем вычисляются численно при помощи ЭВМ. При аналитическом вычислении двойных интегралов их сводят к двум определенным интегралам.

Основные свойства двойного интеграла

Свойства двойного интеграла (и их вывод) аналогичны соответствующим свойствам однократного определенного интеграла.

. Аддитивность . Если функция f (x , y ) интегрируема в области D и если область D при помощи кривой Г площади нуль разбивается на две связные и не имеющие общих внутренних точек области D 1 и D 2 , то функция f (x , y ) интегрируема в каждой из областей D 1 и D 2 , причем

. Линейное свойство . Если функции f (x , y ) и g (x , y ) интегрируемы в области D , а α и β - любые вещественные числа, то функция [α · f (x , y ) + β · g (x , y )] также интегрируема в области D , причем

. Если функции f (x , y ) и g (x , y ) интегрируемы в области D , то и произведение этих функций интегрируемо в D .

. Если функции f (x , y ) и g (x , y ) обе интегрируемы в области D и всюду в этой области f (x , y ) ≤ g (x , y ), то

. Если функция f (x , y ) интегрируема в области D , то и функция |f (x , y )| интегрируема в области D , причем

(Конечно, из интегрируемости |f (x , y )| в D не вытекает интегрируемость f (x , y ) в D .)

. Теорема о среднем значении . Если обе функции f (x , y ) и g (x , y ) интегрируемы в области D , функция g (x , y ) неотрицательна (неположительна) всюду в этой области, M и m - точная верхняя и точная нижняя грани функции f (x , y ) в области D , то найдется число μ , удовлетворяющее неравенству m μ M и такое, что справедлива формула