Как обозначается предел выносливости? Определение предела выносливости при симметричном цикле Зависимость предела выносливости от предела прочности материала

Предел выносливости материала определяется путем испытания идентичных образцов при различных значениях σ max , но при неизменном коэффициенте асимметрии R и регистрации количества циклов, при котором происходит разрушение каждого образца.

Для этой цели используется партия (не менее 10-30), образцов обычно круглого сечения диаметром 7-10 мм. Во избежание концентрации напряжений образцам придается плавная форма, а поверхность тщательно шлифуется или полируется (рис. 17.6).

Предел выносливости зависит от размеров поперечного сечения образца. Поэтому всегда указывается, на образцах какого диаметра определялась эта усталостная характеристика.

Первый образец испытываемой партии нагружается так, чтобы максимальные напряжения превышали предел выносливости при данном коэффициенте асимметрии цикла, и по счетчику на усталостной машине, устанавливается количество циклов, которое выдержал образец перед разрушением.

Количество циклов, выдерживаемых образцом или деталью перед разрушением, называется циклической долговечностью.

В каждом последующем образце при том же коэффициенте асимметрии цикла создается максимальное напряжение, меньшее, чем в предыдущем, а также регистрируется число N циклов, при котором эти образцы разрушаются.

Результаты испытаний представляются графически в виде кривой усталости . По оси ординат откладывается σ max - максимальное напряжение цикла, при котором испытывался образец, а по оси абсцисс - число N циклов, которое выдержал образец перед разрушением.

Обычно на каждом уровне напряжений σ max испытывается несколько образцов, и по результатам испытаний определяется среднее значение разрушающего числа циклов. Именно это значение N и откладывается по оси абсцисс при построении кривых усталости. Различные виды кривых усталости приведены на рисунках 17.7-17.9.

Эксперименты показывают, что кривая усталости образцов из большинства конструкционных сталей и легких (алюминиевых, магниевых, титановых и др.) сплавов, асимптотически приближается к горизонтальной прямой. Отрезок, отсекаемый этой прямой на оси ординат, определяет предел неограниченной выносливости материала σ R или τ R при данном коэффициенте асимметрии цикла R (см. рис. 17.7).

Часто кривые усталости строят в полулогарифмических или двойных логарифмических координатах, откладывая по оси абсцисс логарифм числа циклов lgN , соответствующих разрушению образца, а по оси ординат - максимальное напряжение цикла σ max или lg σ max . Кривая усталости в полулогарифмических координатах имеет вид, представленный на рис. 17.8. Она состоит из двух прямых, причем вторая прямая почти горизонтальна.

Для деталей машин и натурных элементов конструкций, не существует такого числа циклов, выдержав которые образец не разрушается при дальнейшем испытании, и поэтому кривые усталости не имеют горизонтальной асимптоты (рис. 17.9).

В таких случаях можно говорить лишь о пределе ограниченной выносливости.

Для сталей предел ограниченной выносливости, определенный на базе N б = 10 7 циклов можно принять за предел выносливости, так как если стальной образец выдержал 10 7 циклов, то он может выдержать практически неограниченное число циклов. Для цветных металлов за предел выносливости принимается ограниченный предел, определенный на базе от 5·10 7 до 10 8 циклов.

При оценке прочности и ресурса элементов конструкций необходимо располагать уравнением кривой усталости . Применительно к сплавам на железной основе хорошее соответствие экспериментальным данным при симметричном цикле нагружения в широком диапазоне долговечности имеет уравнение Стромейра:

Для гладких и надрезанных образцов различных типоразмеров из деформируемых алюминиевых сплавов, а также для натурных элементов конструкций (лонжерон лопасти несущего винта вертолета, лопасть винта самолета, бурильные трубы) параметр β уравнения (17.10) считают постоянным и равным β =2 . Для аналитического описания левой ветви кривой усталости при отсутствии необходимости экстраполяции опытных данных в область малых N <10 5 и больших N>10 5 долговечностей используют уравнение

,

полученное из уравнения (17.10) для σ -1 =0 .

Если испытания на усталость проводят при асимметричном цикле напряжений с постоянным коэффициентом асимметрии R (при изменяющемся среднем значении напряжения цикла σ m ), то в формулах (17.4-17.11) вместо σ a подставляют максимальное напряжение цикла σ max и вместо предела неограниченной выносливости при симметричном цикле σ -1 подставляют предел неограниченной выносливости при асимметричном цикле σ R . В случае испытаний при σ m =const в указанных формулах вместо σ -1 подставляют предельную амплитуду цикла σ a / , соответствующую неограниченной долговечности.

Результаты экспериментальных исследований показали, что пределы выносливости одного и того же материала при растяжении и кручении меньше предела выносливости при изгибе. Например, при симметричном цикле предел выносливости при растяжении

,

а при кручении

,

где σ -1 - предел выносливости при изгибе. В справочной литературе обычно приводятся значения σ -1 , полученные по результатам испытаний на переменный изгиб.

Были предприняты многочисленные исследования для установления связи предела выносливости σ -1 с другими механическими характеристиками материала. Эти исследования показали, что для сталей

а для цветных металлов зависимость менее определенна:

,

где σ в - предел прочности материала.

Данные соотношения надо рассматривать как ориентировочные, но они показывают, что предел выносливости для некоторых цветных металлов почти в четыре раза меньше предела прочности.

Как показывают опыты, величина предела выносливости материала в значительной степени зависит от соотношения между крайними значениями р max и p min изменяющегося напряжения. Если эти значения равны по величине р а и обратны по знаку (рис.14.1), то мы имеем симметричный цикл, при котором предел выносливости оказывается наименьшим.

Рис. 14.1

Если мы добавим к симметрично колеблющемуся в пределах +р а и -р а напряжению ещё напряжение постоянной величины р m (рис.14.2), то получим случай несимметричного цикла; в этом случае предел выносливости оказывается выше, чем для симметричного цикла.

Крайние значения напряжения при несимметричном цикле р max и p min будут (рис. 14.2):

р max = p m + р a и p min = р m - p а ;

в свою очередь

Напряжение р т называют средним напряжением цикла, а р а - амплитудой колебаний напряжения цикла. Отношение называется характеристикой цикла. При симметричном цикле р т = 0, p min = - p max и r =-1; при постоянном статическом напряжении р а = 0, p min = p max и r = +1; если p min =0, то и r = 0. Приведём несколько примеров несимметричных циклов:

Удвоенная величина амплитуды колебаний напряжения р а

называется «размахом» цикла.

Значение предела выносливости для любого цикла переменных напряжений будем обозначать через р, или со значком внизу, указывающим на соответствующую характеристику цикла. Так, p -1 - предел выносливости при симметричном цикле с характеристикой r= -1, p 0,2 - предел выносливости при несимметричном цикле с характеристикой r = +0,2 и т.п.

Наибольший интерес представляет определение величины предела выносливости при симметричном (р m = 0) цикле, как наименьшего. Эта величина оказывается различной для случая деформации изгиба, осевой деформации (растяжение и сжатие) и кручения.

Для определения предела выносливости при изгибе применяются машины, в которых образец круглого поперечного сечения нагружается через шарикоподшипники, или как консоль - силой на конце, или как шарнирно-опёртая балка - симметрично расположенными равными силами; образец вращается со скоростью около 2000-3000 об./мин. При каждом обороте материал образца в наиболее напряжённых местах испытывает симметричный цикл изменения напряжений от наибольшего сжатия до такого же наибольшего растяжения, и обратно. Число циклов, испытанных образцом, определяется числом его оборотов N, отмечаемым специальным счётчиком.

Образцам придаётся форма с весьма плавными очертаниями, исключающими возможность появления местных напряжений. Опыт по определению предела выносливости производится следующим образом. Заготовляется партия образцов испытываемого материала в количестве 6-10 штук; образцам даётся последовательная нумерация: 1, 2, 3…

Первый образец закладывается в машину и нагружается так, чтобы получить определённую величину наибольшего нормального напряжения "; эту величину обычно берут равной 0,5-0,6 от предела прочности материала; затем машина пускается в ход, и образец вращается, испытывая переменные напряжения от +" до -" до тех пор, пока произойдёт излом. В этот момент специальное приспособление выключает мотор, машина останавливается, и счётчик оборотов показывает число циклов N 1 , необходимое для излома образца при напряжении ".


Тем же порядком испытывают второй образец при напряжении ", меньшем ", третий - при напряжении ""<", и т.д. Соответственно возрастает число циклов, необходимое для излома. Уменьшая для каждого нового образца рабочее напряжение, мы, наконец, для какого-то из них не получаем излома, даже при очень большом числе оборотов образца. Соответствующее напряжение будет очень близко к пределу выносливости.

Опыты показали, что если стальной образец не разрушился после 1010 6 циклов, то он может выдержать практически неограниченное число циклов (10010 6 - 20010 6). Поэтому при определении предела выносливости для того или иного сорта стали прекращают опыт, если образец испытал


1010 6 циклов и не сломался. В ряде случаев при испытаниях ограничиваются и меньшим предельным числом циклов, однако, не меньше 510 6 .

Для цветных металлов подобной зависимости нет, и чтобы обнаружить, действительно ли при заданном напряжении образец может выдержать очень большое число перемен знака, приходится давать до 20010 6 и даже 50010 6 циклов. В этом случае можно говорить об условном пределе выносливости, соответствующем отсутствию излома при определённом числе перемен знака напряжений, - при 1010 6 , 3010 6 и т.д.

Для нахождения числовой величины предела выносливости полученные результаты обрабатываются графически. На рис.14.3 и рис.14.4 показаны два метода подобной обработки. На первой из них по оси ординат откладываются величины ", ",. .., а по оси абсцисс N 1 , N 2 и т.д. Ордината горизонтальной касательной к полученной кривой (асимптоты) и будет равна пределу выносливости. На втором чертеже по оси абсцисс откладываются величины, равные. В этом случае предел выносливости определяется как отрезок, отсекаемый на оси ординат продолжением полученной кривой, так как начало координат соответствует N=. В настоящее время более употребительным является второй метод.

Подобным же образом определяется предел выносливости для осевых усилий (растяжение и сжатие) и для кручения; для этой цели также применяются специальные испытательные машины (пульсаторы и др.).

В настоящее время получено громадное количество экспериментальных результатов по определению предела выносливости различных материалов.. Большая часть произведённых исследований относится к стали, как наиболее употребительному материалу в машиностроении. Результаты этих исследований показали, что предел выносливости стали всех сортов связан более или менее определённым соотношением лишь с величиной предела прочности при растяжении в. Для катаного и кованого материала предел выносливости при симметричном цикле в случае изгиба составляет от 0,40 до 0,60 в; для литья это соотношение заключается в пределах от 0,40 до 0,46.

Таким образом, в запас прочности с достаточной для целей практики точностью можно принять для всех сортов стали

Если подвергать образец стали осевым усилиям при симметричном цикле (попеременному растяжению и сжатию), то соответствующий предел выносливости, как показывают опыты, будет ниже, чем при изгибе; соотношение между этими пределами выносливости может быть принято равным, как показывают опыты, 0,7, т.е. .

Это снижение объясняется тем, что при растяжении и сжатии всё сечение подвергается одинаковым напряжениям; при изгибе же наибольшие напряжения имеют место лишь в крайних волокнах; остальная часть материала работает слабее и, таким образом, несколько затрудняет образование трещин усталости; кроме того, на практике всегда имеет место некоторый эксцентриситет осевой нагрузки.

Наконец, при кручении для симметричного цикла предел выносливости по касательным напряжениям составляет в среднем 0,55 от предела выносливости при изгибе. Таким образом, для стали при симметричном цикле

Эти данные и могут быть положены в основу расчётных формул при проверке прочности.

Для цветных металлов мы имеем менее устойчивое соотношение между пределом выносливости и пределом прочности; опыты дают

= (0,24 0,50) в.

При пользовании приведёнными выше соотношениями (14.1) надо иметь в виду, что предел выносливости для данного материала является характеристикой, зависящей от очень большого, числа факторов; данные (14.1) относятся к опытам с образцами сравнительно малого диаметра (7-10 мм) с полированной поверхностью и отсутствием резких изменений формы поперечного сечения.

Изучение явления усталости показало, что при известных условиях разрушение материала при переменных напряжениях может и не произойти. Свойство материала выдерживать, не разрушаясь, больше число циклов переменных напряжений называют его выносливостью. Пределом выносливости (пределом усталости) называют наибольшую величину циклического напряжения, при котором материал может работать неограниченно долго без разрушения . Предел выносливости обозначается .

Усталостную прочность определяют по результатам экспериментальных исследований определенного числа образцов, подвергнутым испытаниям при различных уровнях циклических напряжений, вплоть до их разрушений. Результаты испытаний серии одинаковых образцов наносят на плоскость или , где– это максимальное за период цикла напряжение, а – число циклов до полного разрушения , получая при этом так называемую диаграмму .

Опыт по определению предела выносливости производится следующим образом. Заготавливается партия образцов испытываемого материала. Выбирают ряд уровней циклических напряжений, при которых будут испытывать образцы. Первый уровень напряжений, как правило, наибольший и составляет величину равную 0,7-0,8 предела текучести материала, остальные уровни напряжения берутся ниже. На каждом уровне напряжений испытывают 5-6 образцов . Эти образцы закладываются в машину и нагружаются. Когда произойдет излом или разрыв, машина автоматически выключается, а счетчик оборотов показывает число циклов, необходимое для разрушения образца.Эксперименты показывают, что при испытаниях образцов на одном и том же уровне напряжений наблюдается значительный разброс разрушений . В таких случаях устанавливают вероятность разрушения в течение некоторого времени t на данном уровне напряжений.

С понижением уровня напряжения долговечности испытываемых образцов возрастают настолько, что приходится назначать некоторое предельное время выдержки , называемое базой испытаний , при которой образцы снимают с испытаний, когда часть из них не разрушилась. Напряжение, при котором 50% образцов разрушаются при , а остальные 50% проходят базу испытаний, называется ограниченным или условным пределом выносливости.

Базы по числам циклов составляют обычно для черных металлов, для сплавов цветных металлов иногда до . В настоящие время нет ясного представления о том, существует ли у материалов абсолютный предел выносливости , так как нередко образцы разрушаются после того, как они предварительно выдержали десятки и даже сотни миллионов циклов. Это можно объяснить наличием в материале технологических дефектов в виде пор, расслоений, неметаллических включений и дефектов поверхностей обработки. Наличие экспериментальных данных об испытаниях конструкционных цветных сплавов дает основание утверждать, что последние не имеют абсолютного предела выносливости. Особую область исследований представляют испытания материалов в условиях коррозионно-агрессивных сред . Многие материалы в этих условиях определенно не имеют абсолютного предела выносливости. Также кроме напряженного состояния в материале еще проявляются электрохимические явления , получившие название эффект Ребиндера .

Предел выносливости при асимметрических циклах нагружения

Наиболее опасным циклом нагружения является симметричный цикл нагружения. Однако большое количество деталей машин работает при асимметричных циклах нагружения. Рассмотрим диаграмму Хея-Зодерберта для стали 45.

Диаграмма Хея-Зодерберта строится в координатах амплитуды напряжений– , постоянная составляющая цикла– . Так как при всегда меньше предела прочности , то все возможные механические состояния материалов находятся в пределах треугольника оав , причем уравнение прямой I имеет вид:

Уравнение прямой 2 представляется так:

Кривая 3 – экспериментальная кривая предела выносливости, полученная при разных амплитудах и постоянных составляющих циклах на одной и той же базе . Ордината при абсциссе представляет собой предел выносливости при симметричном цикле нагружения, обозначается через .

Для кривой выносливости левее луча можно записать эмпирическую зависимость:

,

где К – эмпирический коэффициент , для стали 45 равный 0,6; для других марок сталей около 0,4.

Правее этого луча в некоторый момент начинается медленное развитие шейки, как это имеет место при быстром нагружении материала.

Кривая пределов выносливости продолжена в область отрицательных напряжений, где значение меньше абсолютного значения . В этой области амплитуды пределов выносливости быстро возрастают. Это обстоятельство дает основание утверждать, что при знакопостоянных напряжениях сжатия усталостные разрушения сталей отсутствуют.

Для сравнения с диаграммой Хея-Зодерберга для стали представим такую же диаграмму для серого чугуна . Чугун С4 12-28 представляет относительно хрупкий материал.

Кривая пределов выносливости доходит до линии I , уравнение которой так как чугун разрушается без образования шейки. В области сжимающих напряжений кривая выносливости имеет экстремум и располагается внутри треугольника оав . Это означает, что сопротивление циклическому сжатию ниже сопротивления статическому сжатию. Предел выносливости стали связан с пределом прочности материала и зависит от вида деформации.

Известны следующие эмпирические зависимости для определения предела выносливости при симметричном цикле нагружения:

при изгибе

при растяжении

при кручении

В настоящее время нет достаточно чёткого объяснения того, что в условиях значительных сжимающих напряжений пластические материалы не разрушаются . По-видимому, под действием растягивающих напряжений микротрещина будет развиваться и расти, а под действием сжимающих напряжений закрываться.

Многочисленные эксперименты, проведенные с образцами различных форм и размеров, а также практика эксплуатации деталей машин показывают, что прочность при переменных напряжениях (величина предела выносливости) в значительной степени зависит от формы и размеров детали, а также от состояния ее поверхности и воздействия окружающей среды.

В большинстве случаев испытания на выносливость проводят на лабораторных образцах диаметром 5-10 мм, имеющих в пределах рабочей части строго цилиндрическую форму; поверхность образцов имеет высокую чистоту. Величину предела выносливости, полученную в результате испытания таких (нормальных) образцов, будем считать одной из механических характеристик материала. Если подвергнуть испытанию на выносливость серию специальных образцов, подобных какой-либо конкретной детали, т. е. отличающихся от нормальных образцов наличием концентратов напряжений, абсолютными размерами, качеством обработки поверхности (или только некоторыми из перечисленных факторов), то, как правило, при одном и том же материале нормальных и спешильных образцов предел выносливости, определенный при испытании последних, ниже.

Таким образом, установлено, что пределы выносливости конкретной детали и материала, из которого она изготовлена, различны. Влияние факторов, от которых зависит соотношение между пределами выносливости материала (нормального образца) и детали, более или менее полно изучено лишь для симметричного цикла изменения напряжений. Поэтому примем, что величины различных факторов, влияющих на пределы выносливости, определены при испытаниях в условиях симметричных циклов изменения напряжении.

Кратко рассмотрим влияние на величину предела выносливости концентрации напряжений, абсолютных размеров и состояния поверхности деталей. При этом числовые значения коэффициентов, отражающих влияние перечисленных факторов, не приводим, они имеются в специальной литературе.

Концентрация напряжений. Снижение предела выносливости за счет наличия тех или иных концентраторов напряжений (выточек, отверстий, шпоночных канавок, прессовых посадок и т. д.) учитывается эффективным, или действительным, коэффициентом концентрации напряжений, обозначаемым - для нормальных и - для касательных напряжений.

Эффективный коэффициент концентрации напряжений представляет собой отношение предела выносливости образца без концентрации напряжений к пределу выносливости образца (или детали) тех же размеров, но с концентратором напряжений:

В отличие от теоретического коэффициента концентрации, зависящего только от формы (геометрии) детали, эффективный коэффициент концентрации зависит также и от свойств материала детали: чем менее пластичен материал, тем он чувствительнее к концентрации напряжений. Эффективные коэффициенты концентрации устанавливают опытным путем, но в некоторых случаях при отсутствии экспериментальных данных их вычисляют по известным значениям теоретических коэффициентов концентрации (ссна и ) по формулам

Здесь q - так называемый коэффициент чувствительности материала к концентрации напряжений. Величина q возрастает с повышением предела прочности материала, но не может быть больше единицы (в этом предельном случае теоретический и действительный коэффициенты концентрации равны между собой).

Для деталей из серого чугуна т. е. можно считать, что чугун практически нечувствителен к концентрации напряжений.

При неответственных расчетах и отсутствии данных о величинах действительных и теоретических коэффициентов концентрации величину можно определить приближенно по следующим эмпирическим соотношениям:

а) при отсутствии острых концентраторов напряжений для деталей с чисто обработанной поверхностью

б) при наличии острых концентраторов напряжений

В приведенных соотношениях величины выражены в при их использовании не следует отдельно учитывать влияние качества поверхности детали.

Снижение концентрации напряжений, повышающее экономичность конструкций, достигается различными конструктивными мероприятиями (например, путем увеличения радиусов переходных галтелей в местах ступенчатого изменения размеров поперечного сечения), и термохимической обработкой (например, азотированием) зон концентрации.

Влияние абсолютных размеров детали. Снижение предела выносливости с ростом абсолютных размеров детали носит название масштабного эффекта. Влияние размеров детали учитывается масштабным фактором (или масштабным коэффициентом) представляющим собой отношение предела выносливости, определенного при испытаниях образцов диаметром к пределу выносливости, определенному при испытании геометрически подобных образцов (или деталей) больших размеров, т. е.

Величина масштабного фактора зависит от материала детали (более прочные стали чувствительнее к масштабному эффекту), со размеров, вида деформации (как правило, при одинаковой форме размерах детали ), наличия концентраторов напряжений

Влияние состояния поверхности детали. Усталостные трещины, как правило, начинаются от поверхности детали. Поэтому состояние поверхностного слоя оказывает существенное влияние на прочность при переменных напряжениях.

Риски от механической обработки, повреждения поверхности и т. п. играют роль концентраторов напряжений и могут вызвать весьма значительное снижение предела выносливости. Особенно неблагоприятное влияние оказывает коррозия поверхности.

Влияние состояния и качества поверхности детали на величину предела выносливости учитывают коэффициентом качества поверхности (коэффициентом поверхностной чувствительности), обозначаемым Этот коэффициент представляет собой отношение предела выносливости, определенного при испытаниях образцов с полированной поверхностью, к пределу выносливости, определенному при испытаниях таких же (по форме, размерам и материалу) образцов с заданным состоянием поверхности, т. е.

Предел выносливости обозначается (или), где индексR соответствует коэффициенту асимметрии цикла. Так, например, для симметричного цикла он обозначается
, для отнулевого –, для постоянного –
.

Установлено, что предел выносливости при симметричном цикле является наименьшим по сравнению с другими видами циклов, то есть
.
Так, например,
;
.

  1. Что называется пределом ограниченной выносливости?

Для расчета деталей, не предназначенных к длительной эксплуатации, возникает необходимость в определении наибольшего значения напряжения, которое может выдержать материал при заданном числе циклов N , значение которого меньше, чембазовое . В этом случае по кривой усталости и заданному числу цикловN определяется соответствующее напряжение
, называемоепределом ограниченной выносливости.

  1. Какие основные факторы влияют на величину предела выносливости при симметричном цикле?

При оценке прочности детали, работающей в условиях статического нагружения, механические характеристики материала детали полностью отождествляются с механическими характеристикамиматериала образца , полученными в результате эксперимента. При этом не учитывается разница ни в форме, ни в размерах детали и образца, ни некоторые другие отличия.

При расчете конкретной детали на усталость необходимо учитывать упомянутые факторы. К наиболее существенным факторам, которые влияют на предел выносливости при симметричном цикле, относятсяконцентрация напряжений, абсолютные размеры поперечного сечения детали и шероховатость ее поверхности. Это легко объясняется тем, что все упомянутые факторы способствуют возникновению и распространению микротрещин.

Влияние концентрации напряжений. Вблизи выточек, у краев отверстий, в местах изменения формы стержня, у надрезов и т. п. наблюдаетсярезкое увеличение напряжений по сравнению с номинальными напряжениями, вычисленными по обычным формулам сопротивления материалов. Такое явление называется концентрацией напряжений , а причина, вызывающая значительный рост напряжений – концентратором напряжений.

Зона распространения повышенных напряжений носит местный характер, поэтому эти напряжения часто называют местными .

При напряжениях, переменных во времени, наличие концентратора напряжений на образце приводит к снижению предела выносливости. Это объясняется тем, что многократное изменение напряжений в зоне очага концентрации напряжений приводит к образованию и дальнейшему развитию трещины с последующим усталостным разрушением образца.

Для того чтобы оценить влияние концентрации напряжений на снижение сопротивления усталости образца с учетом чувствительности материала к концентрации напряжений, вводят понятие эффективного коэффициента концентрации , который представляет собой отношение предела выносливости стандартного образца без концентрации напряжений к пределу выносливости образца с концентрацией напряжений:

(или
).

Влияние абсолютных размеров поперечного сечения. С увеличением размеров поперечных сечений образцов происходит уменьшение предела выносливости. Это влияние учитываетсякоэффициентом влияния абсолютных размеров поперечного сечения (ранее этот коэффициент называлсямасштабным фактором ). Упомянутый коэффициент, равен отношению предела выносливости гладких образцов диаметромd к пределу выносливости гладкого стандартного образца диаметром, равным 7,5мм :

(или
).

Шероховатость поверхности. Обработка поверхности детали оказывает существенное влияние на предел выносливости. Это связано с тем, что более грубая обработка поверхности детали создает дополнительные места для концентраторов напряжений и, следовательно, приводит к возникновению дополнительных условий для появления микротрещин.

Отношение предела выносливости образца с данной шероховатостью поверхности к пределу выносливости образца со стандартной обработкой поверхности, соответствующей ГОСТ 2789–73, называетсякоэффициентом влияния шероховатости поверхности :

(или
).

Значение этого коэффициента определяется по таблицам или графикам, которые приводятся в справочниках по сопротивлению материалов или в другой научной литературе.